Here is the first installment of our “Why Do I Care” series. Every so often, we’ll blog about some of the questions people new to the gasket industry may be looking for more information on.
This week, we’re going to talk about compressibility and recovery. These are two of the most important properties in selecting a gasket material, and ones you definitely need to pay attention to. Having a material with the right compressibility and recovery for your application makes all the difference in the performance of the application.
How hard or soft is the material? How much will the material compress when pressure is applied to it? This is a key factor involved in the joint. What are the flanges like, and how much load is available? Are they cast or stamped, rigid or not? “Soft” sealing materials such as cork, rubber, sponge, foam, etc., compress large amounts and can be used when low flange load is present. Denser materials such as fibers, hard rubbers, composites, metals, and others require more load to achieve a seal and only compress a small amount. Gasket materials chosen should possess sufficient compressibility to overcome flange imperfections, internal pressure from fluid being sealed, and deflection.
How springy is the material? How close to “normal” will the material be when pressure is removed? Recovery is what it’s all about in flat gasket applications. Materials must have sufficient recovery to maintain a seal after initial cycles and relaxation. Stiffer, denser products, while having less compressiblity, often have the best recovery characteristics. The magnitude of the deflection and recovery is less, but better.
This is an example of compressibility charted against load. As you can see by this simple chart, the higher load creates more displacement. For many materials, they are nearly linear within their usable ranges, for “non-soft” materials such as fibers and composites, this would be up to 5000 psi. Engineers designing joints can benefit by this information to compare to the load available in the joint by the bolts (both #, type, and pattern) to assure adequate compression.
This chart is actually a load/deflection curve, which shows the full scope of both compressibility and recovery in a graphic form.
You may be wondering why someone just can’t design a material that is “perfect” for compressibility and recovery? Well, that could be done, but what properties are you willing to give up? With any material, you need to find the balance you need between all properties, and that sometimes means giving a little of this for that. Doing your research and fully understanding what each gasket material has to offer is going to help ensure your application runs as smoothly as possible.
What are some other properties that you pay particular attention to? If you are interested in subscribing to Sealed-In’s blog posts, email sales@mtigasket.com
This week, we’re going to talk about air aging as it relates to your gaskets and gasket material, and why it is important. Air aging is similar to ignition loss in the fact that there is interest in the weight loss of a material at elevated temperatures, but the similarities really stop there. So, what is air aging?
This week, we’re going to talk about torque retention (or torque loss, depending on your particular viewpoint) and how it affects your gasket performance. Torque retention is related to many of the topics previously discussed, but we thought we’d take a closer look at it specifically.
However, as we all know, things never stay the same. Sometimes the torque values aren’t followed like they should be, or sometimes a material gets replaced, and flange surfaces change throughout the repetitive heat cycles. When this happens, you have to trust the performance of your gasket material. In some cases, over-compression can happen, and that can lead to problems. What are some of the warning signs of a gasket that is or has ever been compressed beyond what is recommended?
This week, we’re going to talk about bolt load. You may also have heard the terms: torque load, flange load, or compressive force, which all refer to the same thing. Bolt load is something to keep in mind when you are designing your joint and selecting your gasket material. Without knowing or paying attention to it, you may be setting yourself up for an insufficient load situation…and a problem.
This week, we’re going to talk about creep relaxation in gaskets and gasket material. This is something that will happen to some extent in most gasket materials. How much or how little of this you see depends on your gasket material selection and the application itself. It is important to have an understanding of creep relaxation and how it relates to a particular material.
This week we’re going to talk about ignition loss in gaskets and gasket material. It is a fairly simple concept, but it can be a critical property if you’re dealing with heat that is potentially higher than your gasket material can handle.